

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

QUALIFICATION: BACHELOR OF COMPUTER SCIEN	CE
QUALIFICATION CODE: 08BHIS	LEVEL: 8
COURSE: APPLIED CRYPTOGRAPHY	COURSE CODE: APC811S
DATE: JULY 2019	PAPER: THEORY
DURATION: 2 HOURS	MARKS: 70

SECOND	OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER
EXAMINER (S):	DR ATTLEE M. GAMUNDANI
MODERATOR:	MR ATUMBE J BARUANI

THIS QUESTION PAPER CONSISTS OF 1 PAGE

(Excluding this front page)

INSTRUCTIONS

- 1. Answer ALL the questions on the answer scripts.
- When writing take the following into account: The style should inform than
 impress, it should be formal, in third person, paragraphs set out according to
 ideas or issues and the paragraphs flowing in a logical order. Information
 provided should be brief and accurate.
- 3. Number the answers clearly; ensure that your writing is **legible**, **neat** and **presentable**.

PERMISSIBLE MATERIALS

1. Calculator.

 Question 1 (a) Explain any three Fiestel cipher design features. [6] (b) Given that a cryptosystem is made up of E, D, M, K, C where M=Plaintext; K= Key(s); C=Cipher text; E= Encryption and D = Decryption. Formulate an equation in terms of C, K or M to represent a. E. [3] b. D. [3] (c) Cryptography can be useful towards information protection; under what circumstances would you consider this statement to be true? [4] (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} = 12, what is Bob's public key Y_{Bob}? [3]
 (b) Given that a cryptosystem is made up of E, D, M, K, C where M=Plaintext; K= Key(s); C=Cipher text; E= Encryption and D = Decryption. Formulate an equation in terms of C, K or M to represent a. E. b. D. (c) Cryptography can be useful towards information protection; under what circumstances would you consider this statement to be true? (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} =12, what is Bob's public key Y_{Bob}?
 text; E= Encryption and D = Decryption. Formulate an equation in terms of C, K or M to represent a. E. b. D. (c) Cryptography can be useful towards information protection; under what circumstances would you consider this statement to be true? [4] (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} =12, what is Bob's public key Y_{Bob}?
 a. E. b. D. (c) Cryptography can be useful towards information protection; under what circumstances would you consider this statement to be true? (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} = 12, what is Bob's public key Y_{Bob}?
 b. D. [3] (c) Cryptography can be useful towards information protection; under what circumstances would you consider this statement to be true? [4] (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} =12, what is Bob's public key Y_{Bob}? [3]
 (c) Cryptography can be useful towards information protection; under what circumstances would you consider this statement to be true? [4] (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} =12, what is Bob's public key Y_{Bob}? [3]
you consider this statement to be true? [4] (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X _{Alice} = 5, what is Alice's public key Y _{Alice} ? [3] (ii) If Bob has private key X _{Bob} =12, what is Bob's public key Y _{Bob} ? [3]
 (d) Under timing attacks, DES proves certain strengths. Identify and explain any two such strengths [4] Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} =12, what is Bob's public key Y_{Bob}? [3]
Question 2 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X _{Alice} = 5, what is Alice's public key Y _{Alice} ? (ii) If Bob has private key X _{Bob} =12, what is Bob's public key Y _{Bob} ? [3]
 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} =12, what is Bob's public key Y_{Bob}? [3]
 (a) Alice and Bob decides to use the Diffie-Hellman key exchange technique with a common prime q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} =12, what is Bob's public key Y_{Bob}? [3]
 q=47 and a primitive root α = 7. (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} = 12, what is Bob's public key Y_{Bob}? [3]
 (i) If Alice has a private key X_{Alice}= 5, what is Alice's public key Y_{Alice}? [3] (ii) If Bob has private key X_{Bob} = 12, what is Bob's public key Y_{Bob}? [3]
(ii) If Bob has private key X _{Bob} =12, what is Bob's public key Y _{Bob} ? [3]
(iii) What is the shared secret key between Alice and Rob? [F]
(iii) What is the shared secret key between Alice and Bob? [5] (b) Anna wants to send a message P with a digital signature kP to Peter. Anna and Peter have an
authentic copy of each other's public keys, and have agreed on using a specific hash function h.
(i). Outline the steps that Anna must follow when signing P . [4]
(ii). What steps must Peter follow upon receipt of P , for validating the signature kP? [5]
(ii). What steps must reter follow upon receipt of 1, for validating the signature kin. [5]
Question 3
(a) Why would you consider a one-time pad a perfect encryption scheme? [2]
(b) Given the communication between Susan and Jay, such that Susan intends to send a message
to Jay by preserving the message integrity. Outline briefly the cryptographic steps that Susan
and Jay must follow to ensure the integrity of the message by creating and verifying a MAC. [6]
(c) Using brute force attack, decrypt, "GQ RMBYW RFC BYW MD CVYK." [5]
(d) Explain in detail, how a smart card can protect PGP electronic e-mail on a PC running windows
against malware. [7]
Question 4
(a) Consider the RSA cryptosystem. Show that the cipher texts corresponding to the messages 0, 1
and n-1 are the messages themselves. [8]
(b) Give and explain any two real world usages of public key encryption. [2]

*****End of Examination Paper****

[2]